Part 2, project 2, exercise 3: Still life with natural objects (step 2: testing background colours)

Updated on 26 February 2017 (Harvard referencing).

25 April 2016. Last time I went to our local art supplier I bought some acrylic gloss medium, with I wanted to test during the course. This exercise is a good opportunity. Since my not too good experience when diluting my type of acrylic paint with water over the last three months made me look for alternatives. So I will use the gloss medium for that purpose this time and also test its finishing effect. The instructions include a warning that the application of too many layers of medium may cause fogging, so I will need to plan carefully.
The first tests on acrylic paper revealed an increase in transparency of the mix paint/medium. It was also much easier to spread the colour, although I still noticed large differences in layer thickness when using a flat brush. The only chance of getting a totally even layer was to apply a relatively diluted mix, which was then of course very light in tone and – something I need to be very careful to avoid – had hundreds of tiny bubbles enclosed, which would not disappear during the drying process. What I will do here is the same as with custard powder stirred into milk, which is wait a few minutes before using the mix.

27 April 2016. The results of my experiments are summarized in Fig. 1 below. First of all I prepared small areas of my acrylic paper with 3 mixes for a white background:

1. Paper only
2. Acrylic binder on its own
3. Acrylic binder with about the same amount of acrylic white mixed in
4. Acrylic white on its own

Next I prepared a mix of gold ochre and primary magenta to produce Sahara sand orange (or what I think it might look like during one of those golden sunsets) and mixed some white into half of that. Both of these I again mixed with acrylic binder at a 1:1 ratio. All these I then tried out on all of the above backgrounds, finding the following:

  1. On the paper only ground the undiluted colours left dry-looking edges, an effect I quite like. When mixed with binder, the dry edges were gone, the paint was easier to spread and the chroma was enhanced, particularly in the mix without white.
  2. Doing the same on the binder only background reduced the chroma of the binder-added mixes strongly and the difference between the mix with and without white disappeared altogether. The colour only mix had no dry edges and dried without a glossy sheen, i.e. not surprisingly the varnishing effect is blocked by a layer of paint on top of it.
  3. The ground consisting of binder and white appeared to enhance colour and tonal difference greatly in all the mixes.
  4.  Painting on white only ground the binder-added mixes appeared somewhat darker, Applying the colour only mix was accompanied with noticeably greater restistance.
  5. Applying a finishing layer of binder on the paint only areas did not increase brilliance in the same way as mixing binder directly into the paint – probably because the amount required for dilution was far greater than the ultra thin film I put on in my first attempt.
9_Testing_backgrounds_part1
Figure 1. Testing different backgrounds and mixes of acrylic colour and binder                          (explanation see text)

The above tests left me with a clear favourite for an indifferent ground layer, binder and acrylic white mixed 1:1. This I used to prepare the second half of the paper, then divided it up into triagles in the way I had selected from my photos taken in the previous step and experimented with different colours, colour and binder mixes and surface structures I thought suitable to represent sand, sea and volcanic rock (Fig. 2).

10_Testing_backgrounds_part2
Figure 2. Testing composition and colours for the background

Since my intention was to emphasize that these areas interact, since the above seemed a bit dull, because it was too symmetrical, because I was not satisfied with the edges and, more importantly, because the chosen colours would not provide enough contrast for my objects, I spent another hour or two changing tonal values and edges (Fig. 3):

11_Changing_edges_hues_2
Figure 3. New variant with changed tonal values and attention to edges

Later in the day I was going through a great number of screenshots I had taken during Drawing 1 and which had been sitting around on my computer’s desktop for a year to be cleared away. I came across one, whose origin unfortunately I cannot remember at this point, dealing with composition rules and there were, more or less, my triangles (Fig. 4):

15_Dividing_up_paper
Figure 4. Some composition rules. Source: [n.k.]
This discovery helped me decide that I would use this background to work from and, to do a quick test, I placed my objects on the background (Fig. 5a-c):


From the above it is obvious that contrast will have to be enhanced further. My intention here is to get acquainted with the structure of my objects by drawing (ink, pencil, watercolour and/or similar) in the next step and to adapt the background only after successfully translating them into painted objects. I have an idea for this, which might look quite interesting if I succeed in making it visible, but that will have to wait a little longer.

 

 

 

 

Advertisement

Part 2, project 1, exercises 1 to 3: mixing greys and colours

Updated on 20 February 2017 (Harvard referencing).

12 April 2016. Since the exercises on mixing colours are intimately connected, I waited until I had completed all of them in order to write a summary of the experience, which, as has been noticed by a number of fellow students before, required the input of
enormous amounts of paint and time. In return it gave a growing understanding of the nature of colour and, in the case of some of the experiments, a near-meditative peace of mind.

Exercise 1: Mixing greys – anachromatic scale

Since I had no previous experience whatsoever regarding the proportions of white and black needed in producing a sensible number of steps for the above scale, I started ever so carefully, adding only minute quantities of black each time. This resulted in a relatively impressive 64 shades in total (see Fig. 1 below). At the dark end of the scale the differences are unfortunately very difficult to see in the photo. With my limited knowledge of photo editing I made things not much better, but in nature there is a continuous darkening visible. Interestingly, I went through three cycles of mixing in black and adding to the darker end of the scale before my eyes/brain would agree that NOW there was a real difference to the shades put on before. When, in the end, looking at the result, the scale went smootly from white to black.

Achromatic_mixing_11042016
Figure 1. Anachromatic scale using ivory black, 64 steps

Taking two small pieces of paper with neutral grey and placing them on both ends of the scale as advised in the study guide, revealed that the same tone looks darker near white than near black (Fig. 2a and 2 b below). According to Chevreul’s idea that the brain tends to exaggerate differences in tone in order to allow a clear differentiation – see my previous post on Chevreul’s colour theory (Lacher-Bryk, 2016). I assume that probably the real differences may be less prominent on both ends of the scale.


The neutral grey produced in the above exercise I then used to prepare an A2-sized ground on acrylic paper. Despite having assumed that I had mixed my grey very thoroughly I noticed differences in tone across the ground. So I made a mental note that it would be necessary to work extremely thoroughly with totally clean tools to achieve acceptable results during the exercises to follow.
It took me two whole days to complete the experiments below and left me with literally kilograms of little heaps of mixed paint. Since I have no use for them in the near future it will mean having to discard them with mixed feelings. So I took a souvenir photo of the lot (Fig. 3):

4_Tons_of_paint_12042016
Figure 3. Leftover colour mixes

The following photo shows an overview of the colour mixing exercises (Fig. 4):

5_Overview_colour_mixing_12042016
Figure 4. Results of the colour mixing exercises


Exercise 2: Primary and secondary colour mixing

To be honest, I am the owner of only a few hues of acrylic paint. I like mixing and I have accumulated some intuitive experience in decades of watercolour painting. Of course, there are some important differences when mixing acrylic paint when compared to watercolour, in particular the source of white mainly as paper white in the one case, and white pigment in the other.
So here is my modest selection of primary colours (Fig. 5):

6_Primary_colours_12042016
Figure 5. My primary colours

In the case where I had only two hues of a colour (yellow and red) swapping their positions had no effect regarding the perceived relative tone, but in my opinion it does make a difference to the story told by the hues, tiny as it may be, when reading from light to dark or vice versa. With the blues, however, the primary blue (cyan) looks lighter when placed between two darker colours (ultramarine and bluegreen in my case) than when it sits to the side of the darker hues. The most intense hues of the above were primary red, Naphthol red deep and primary blue (cyan), so I used these in the following mixing experiments (Fig. 6):

7_Mixing_primary_colours_12042016
Figure 6. Primary colour mixing: top – yellow to red, middle – yellow to blue, bottom – red to blue

The first thing I noticed when comparing the three sets of scales was that identical handling does not produce scales of equal length. While the change from yellow to red was achieved comparatively quickly and the mixes on the red side of the scale look relatively similar (not only on the photo but also in reality), the change from yellow to blue produced an enormous variety of clearly different greenish hues. I even ran out of paper at the end of the scale and had to stop it more abruptly than intended. The mix between red and blue produced did produce some of the murky dark mix mentioned in the study guide, although I would rate some of the hues towards the blue end of the scale as something like violet.
Still, testing other combinations of blue and red in order to make more believable violets gave the following results (Fig. 7). The photo, unfortunately, does not faithfully reproduce the hues especially in the top row, but the most convincing results came from primary magenta mixed with primary blue (bottom row).

8_Mixing_violet_12042016
Figure 7. Mixing violets: top – Naphthol red deep and ultramarine, middle – primary magenta and ultramarine, bottom – primary magenta and primary blue

The most time and paint-demanding experiments of this exercise were those aimed at mixing secondary colours in the above manner but trying to keep tonal values constant. I continued mixing in the second colour plus white until the hue of the white+colour mix was the same as the original second pigment. A whole day was devoted to the following three scales (Fig. 8):

9_Primary_colours_constant_hues_12042016
Figure 8. Mixing secondary colours while keeping tonal values constant: top – yellow to red, middle: yellow to blue, bottom: red to blue

The first thing to mention here is that I may have misinterpreted the instructions. I don’t know whether I may have been required to mix in some white with the starting primary colour, too. I did not and in the case of yellow as starting colour this meant that I had to add ten times the amount of white, and sometimes far more, with each tiny blob of secondary colour in order to keep tonal values constant. This also meant discarding enormous amount of paint each time I started another hue. Interestingly, the same effect was not noticeable after two thirds of the red to blue scale. There were 12 steps in the scale and no white had to be added after step 8. I have no valid explanation for the phenomenon yet, but maybe the red in this case has a slightly darker tonal value than the blue, so when having got rid of the difference by mixing in white for a while, the adding of more blue would not make any further changes to the overall tonal value. Or it may be my eyes, which are not yet expert at recognising small tonal differences with certainty. However, although I can see some fluctuations, I am quite pleased with the outcome. Considering the differences in darkening through drying in different hues of acrylic paint I was surprised to see a relatively smooth result. The brownish grey I was supposed to see halfway through the red to blue scale according to the study guide was not really there apart from the third mix from the left, but I may have msjudged the amount of colour to mix in in the first step, so there is a chance of having missed some information here simply by low resolution.

Exercise 3: Broken or tertiary colours

In the last exercise, requiring the mixing of secondary colours, the occurrence of grey was perfectly visible in the case of a scale between orange red to green blue, but was completely missing in the transition from sap green to vermilion. Maybe the mustard colours to the right of the sap green count as broken or tertiary colours without being grey. They certainly lack chroma when compared to the original colours (Fig. 9).

10_Secondary_colours_constant_hues_12042016
Figure 9. Mixing secondary colours while keeping tonal values constant: top – orange red to green blue, bottom: sap green to vermilion

A phenomenon I noticed in all the mixing experiments was the different qualities of the colours chosen to mix, which resulted in skewed transitions in some instances. For example, in the mixing of primary colours the transition from yellow to red was fast, so that most of the scale I would describe as reddish. The same effect was visible in e.g. the transition from yellow to blue shown in the second photo from the bottom, second row, and in the last of all mixes from sap green to vermilion. I would tend to describe the scale as orange-dominated. It would be interesting to have other people look at the scales to see whether their perception matches my own.
Experimenting in this way was a major hint regarding both the incredible properties of colour and the power of human perception. It also makes my head swim to think of the worlds I need to discover yet. No wonder we are all addicted to colour.

References:

Lacher-Bryk, A. (2017) ‘Research point: Chevreul’s colour theory’ [blog]. Andrea’s OCA painting 1 blog, 3 Apr. Available at: https://andreabrykocapainting1.wordpress.com/2016/04/03/research-point-chevreuls-colour-theory/ [Accessed 20 February 2017]

Part 1, project 2, exercise 1: Transparent and opaque – tonally graded wash

Updated on 19 February 2017 (Harvard referencing).

25 February, 2016. For this exercise I made several longish strips using my discarded heavy watercolour paper paintings, both smooth and rough, and followed the instructions in the study guide.
Since I am working with acrylic paint, I soon found out that in order to produce a  graded wash I would need to work quickly and developed a system allowing satisfactory results. When still wet the finished strips looked better than they did after having become dry, so none of them are perfect, although I noticed that I became better with practice.

With the colours (Amsterdam) and types of paper I used in this exercise the difference between wet-in-wet washes and painting on a dried layer was hardly noticeable. Luckily I had seen the expected effects before on other occasions, e.g. with the pear painted on smooth cardboard for exercise 1b of Project 1. I did notice, however, that some pigments seem to repel each other at the microscopic level, which when painting wet-in-wet will leave small areas of incomplete mixing, somewhat like freckles on a face. The same effect I know from certain watercolour pigments, where a drop of one colour put into a puddle of the other will cause the latter to move towards the edges of the puddle instantly. I have not done the experiment recently, but think I remember it was particularly effective, and annoying, with Schmincke Horadam indigo.

1_tonally_graded_wash_1_25022015
Figure 1. Tonally graded washes, first layer, top: ultramarine, bottom: bluegreen
2_tonally_graded_wash_2_25022015
Figure 2. Tonally graded washes, ultramarine and bluegreen, left: on dried layer, right: wet in wet
4_tonally_graded_wash_4_25022015
Figure 3. Tonally graded washes: left and right: on dried layer, centre: wet in wet
5_tonally_graded_wash_5_25022015
Figure 4. Tonally graded wash, detail

In the above picture (Fig. 4) a difference between wet in wet washes and letting the first layer dry first is visible because the brush strokes on the “solid” side of the first colour became enhanced by the second colour and thus form a most attractive “glazing” effect.

6_tonally_graded_wash_6_25022015
Figure 5. Tonally graded wash: wet in wet, detail

In contrast, the above example (Fig. 5) shows the effect of wet in wet painting: The result is a more or less unstructured mix in different proportions, a glazing effect is missing.

7_tonally_graded_wash_7_25022015
Figure 6. Tonally graded washes. Left: on dried first layer, right: wet in wet

In the last set of the series (Fig. 6 above) I think that I spotted a few other differences between dried and wet in wet layers. Apart from not liking the red-green combination and a strange impression of a “magnetic repulsion” between the two colours the most dilute washes on the most solid first layers at either end of the strip seem to have helped enhance the chroma of the latter, while the central bit seems to have lost its radiance, it appears grey rather than coloured. A glazing effect was not visible in either of the two strips.
In my eyes the most successful of the combinations was the dried bluegreen and gold ochre wash. Will try and read about the physics and chemistry behind the above!